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Complexity in Solving Linear Prediction

(Refs: Hayes §5.2; Haykin 4th Ed. §3.3)
Recall Augmented Normal Equation for linear prediction:

FLP Ru12y = [ F;M} BLP RMHaABj:[ g }

As Rp4+1 is usually non-singular, ap, may be obtained by inverting
Rp+1, or Gaussian elimination for solving equation array:

= Computational complexity O(M3).
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Motivation for More Efficient Structure

Complexity in solving a general linear equation array:
@ Method-1: invert the matrix, e.g. compute determinant of Rp;41
matrix and the adjacency matrices
= matrix inversion has O(M3) complexity

@ Method-2: use Gaussian elimination
= approximately M3/3 multiplication and division

By exploring the structure in the matrix and vectors in LP,
Levison-Durbin recursion can reduce complexity to O(M?)

@ M steps of order recursion, each step has a linear complexity w.r.t.
intermediate order

@ Memory use: Gaussian elimination O(M?) for the matrix, vs.
Levinson-Durbin O(M) for the autocorrelation vector and model
parameter vector.
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Levinson-Durbin recursion

The Levinson-Durbin recursion is an order-recursion to efficiently
solve the Augmented N.E.

M steps of order recursion, each step has a linear complexity
w.r.t. intermediate order

The recursion can be stated in two ways:

© Forward prediction point of view

@ Backward prediction point of view
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Two Points of View of LD Recursion

Denote a,, € Cm+DX1 35 the tap weight vector of a forward-prediction-error
filter of order m =0, ..., M.

am-10=1, am-1.m 20, amm =m (a constant “reflection coefficient”)

Forward prediction point of view
am,k — amfl,k + rma:;—l,m—k' k = 07 ]., ceey m

In vector form: a,, = [ 2"6_1 ] +Tm [ Bq* ] (€23

m-1

Backward prediction point of view

amk = am_1mk T Tmam—1k, k=0,1,....m

In vector form: a8 = [ qu ] T [ am-1 }
Am_1 0

(can be obtained by reordering and conjugating (sx))
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Recall: Forward and Backward Prediction Errors

(FLP)Y (BLP)
Ugn3 T- T T
WCn-1) Y:\ fre Jj 2 ﬂ—_\ e U balr)
Win2) 1 ] bstnd
M[V\'ﬂ | *
b 0, = K‘&t‘\t\
o fmln] = uln] — @[n] = a7 uln]
~~
(m+1)x1

o by[n] = u[n— m] — &[n— m] = a5 " u[n]
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(3) Rationale of the Recursion

Left multiply both sides of (x%) by Rp,41:

LHS: Rypy1a, = [ OP'" } (by augmented N.E.)

. am_1 _ R LE,* Am—1
oo ][5
Pm
m Zm-—1 Amfl
) 0 [ r) H 0
ws @ Roa | 2 |= [P R, [, ]
|: LHagil :| %TT)*I
B Rmé,‘?,*,l o /3::11
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Computing [,

Put together LHS and RHS: for the order update recursion (kx) to

hold, we should have

P Pm-1 Tnfl
|: Om :| = mel + rm mel
-m Amfl mel
N Pmn=Pm_1+TmnlA}_,
0= Am—1 + rum—l
=
amm = [m= _,%:::11

Pm = Pm-1 (1 - ’rm‘z)

Caution: not to confuse P,, and I',;,!
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(4) Reflection Coefficients I,

To ensure the prediction MSE P, > 0 and P, non-increasing
when we increase the order of the predictor (i.e., 0 < Py, < Pp—1),
we require |I'm]2 <1 for Vm > 0.

Let Py = r(0) as the initial estimation error has power equal to the
signal power (i.e., no regression is applied), we have

Pu=Po-TIp_1(1—m?)

Question: Under what situation I',,, = 07
i.e., increasing order won't reduce error.

Consider a process with Markovian-like property in 2nd order statistic
sense (e.g. AR process) s.t. info of further past is contained in k recent
samples
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(5) About A,

Cross-correlation of BLP error and FLP error : can be shown as
Ap1 =E [bpn1[n—1]f_[n]]

(Derive from the definition Am_1 £ rB73

11

and use definitions of

bm—1[n — 1], f5_1[n] and orthogonality principle.)
Thus the reflection coefficient can be written as

P Ap _ E [bm—1[n — 1]£%_4[n]]
" P E [[fm-1[n]?]

Note: for the Oth order predictor, use mean value (zero) as estimate, s.t.
foln] = u[n] = bo[n],

- Bo = E [boln — 1]f; []] = E [ufn — 1u*[n]] = r(~1) = r(1)
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Preview: Relations of w.s.s and LP Parameters

For w.s.s. process {u[n]}:

WOY m2) oo u(M]
T st
Ao comrelodion uj— have otk vatwes £ ()
JuAAT o) P} == - S

&) b1y
(6 1) x Linear prediction
fef lectiom.

‘ (b
Loeff dreon T, (LY — %au,f}
(
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(6) Computing a,, and Py by Forward Recursion

Case-1 : If we know the autocorrelation function r(+):
Po=reed

O Ad.=1r(D
( nder reoursitn)

I M=ty - M
Pa= — o=t
wm— PM'— -
PERNY . FWWPWT’*M”—M

[ Omke= Om-, g+ p &M_( m—K

(y\skere, Q- 06=1; Qwt,m=10)
Aw = rwﬂ Am,
Pan= Pu (1= [Pl

o # of iterations = an‘le m= w comp. complexity is O(M?)

o r(k) can be estimated from time average of one realization of {u[n]}
PKk) = g SN, ulnlut[n— k], k=0,1,...,M
(recall correlation ergodicity)
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(6) Computing a,, and Py by Forward Recursion

Case-2 : If we know I, I'p, ..., Ty and Py = r(0),
we can carry out the recursion for m=1,2,..., M:

am,k - am—l,k + rma;knfl,mfk' k == ].7 ceey m
P = Pr1 (1= |Tm[?)
Note: aAmm = Am—1,m + rma;;—l,o =0+Tnh-1=T,
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(7) Inverse Form of Levinson-Durbin Recursion

Given the tap-weights ay,, find the reflection coefficients 1,5, ..., [m:
Recall: (FP) amk = am-1,k + rma*m—l,m—k’ k=0,....,m
(BP) a5 m—k = am_1,m—k T Tmam—1k amm =Tm
Multiply (BP) by I, and subtract from (FP):
a1k = e = I ek — 0, m
=Tm=amm lm-1=am-1,m-1,. - i.e., From ay, = a,, =y

iterate with m=M -1, M -2, ... to lower order

ford 17 = = = 4w ety T T T fuen
- « N | T T H
] *=
o) Lt - i3 !
. bl (L _ bhm Bt o bautnd
see §5 Lattice structure: e I
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(8) Autocorrelation Function & Reflection Coefficients

The 2nd-order statistics of a stationary time series can be
represented in terms of autocorrelation function r(k), or
equivalently the power spectral density by taking DTFT.

Another way is to use r(0),I1,12,...,[p.

To find the relation between them, recall:
M-1 A
DAmo12rBTa, =3 " ap_1kr(—m+k)and [, = — P

= [ Pm1 = ZT:_ol am—1kr(k — m), where a,_10=1.
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(8) Autocorrelation Function & Reflection Coefficients

Q r(m)=r"(-m)=-T}P — >k 1am 1k (m—k)
Given r(0),l1,T2,...,Ty, can get a,, using Levinson-Durbin
recursion s.t. r(1),...,r(M) can be generated recursively.

@ Recall if r(0),...,r(M) are given, we can get a,,
So I'1,...,m can be obtained recursively: Iy, = am.m

@ These facts imply that the reflection coefficients {I'x} can
uniquely represent the 2nd-order statistics of a w.s.s. process.
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Summary

Statistical representation of w.s.s. process

Auto conrelodlon lj’ hawealkvalwas g (-
JuAAT $h ) o} == = p.s-dh.

feflectm // \\* o Mmm

eoeff- v, (LT ——— %eu. l}

(FLP)Y (BLP)
ugn T- T
won-1) Yj 3o jhm fj e ] baT)
Wn-2] 1 b3tn]
W Ch-3)
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Example of Forward Recursion Case-2

e.g .

(eae2). Eiver P P, T3 and PG ,j%krk_{)\;(mo\ Ps Q'j.
o Pwﬁﬁm—wﬁ\wﬂ‘w 3.

@ P = (D
O w=t: Mo=1; Qu=[: (rJszior 12( :DPDP(L:[PIM
W= 2 . =1 0oy =0+ L, = [+ a1

© ot e e
Pr= P lI- IR e ey

@ m=3 Qs,o=1; R3n= {L,wﬂ&&fﬂn‘&ﬁtpg-pf
Oye= Kozl 0, = Par 3P+ PR
3,3 = 17
Ps= Pall=1R:[)
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